Mineral evolution is concerned with the timing of mineral occurrences, such as the earliest reported occurrences in the geologic record. Minerals containing essential Li have not been reported from rocks older than ca. 3000 Ma, thus the lithian tourmaline (fluor-elbaite) and mica (lepidolite) assemblage from a pegmatite near Zishineni associated with the ca. 3000 Ma Sinceni Pluton presents unusual interest. Fluor-elbaite (0.75-0.98 F per formula unit) forms green crystals up to 50 trim long. Spindle stage measurements give omega = 1.652(1), epsilon = 1.627(1) (589.3 nm). Optical absorption spectroscopy shows Fe and Mn are divalent; infra-red spectroscopy demonstrates the presence of Li and indicates the presence of (OH) at both the (OH) sites. Electron microprobe analysis of 330 points on several prisms, the largest of which is zoned in Fe and Ca, gives the following average and standard deviations in wt%: SiO2 37.29 (0.26), TiO2 0.05 (0.05), Al2O3 38.14 (0.35), Cr2O3 0 (0.02), MgO 0.02 (0.01), MnO 3.57 (0.25), FeO 2.48 (0.60), Na2O 2.48 (0.09), K2O 0.03 (0.12), CaO 0.77 (0.21), F 1.80 (0.11), Cl 0 (0.01) wt%.Nuclear reaction analyses gave Li2O 0.91 (0.04) and B2O3 10.55 (0.45). The empirical formula of fluor-elbaite was determined by integrating crystal-chemical data from electron microprobe analysis, nuclear reaction analysis, crystal structure refinement using X-ray diffraction, infra-red and optical absorption spectroscopy:(X)(square 0.09Na0.77K0.01Ca0.13)(Sigma 1.00)(Y)(square 0.35Li0.59Mn0.492+ Fe0.332+Al1.23Ti0.01)(Sigma 3.00)Al-6(Si6O18)(BO3)(3)(O3)(OH)(3)(O1)[F-0.92(OH)(0.08)](Sigma 1.00). The crystal structure of fluor-elbaite was refined to statistical indices R1 for 1454 reflections similar to 2% using MoKa X-ray intensity data. Structural data confirm the presence of significant vacancies at the Y site. Micas include lepidolite in flakes several millimeters across that are veined and overgrown by fine-grained muscovite.Silica and (FeO + MnO) increase, and A1 decreases with F, all giving tight linear fits for both micas taken together, suggesting both micas can be regarded as interstratified muscovite and lithium mica consisting of 35.2 wt% masutomilite containing nearly equal amounts of Mn and Fe, 52.8 wt% polylithionite and 11.9 wt% trilithionite. Muscovite and lepidolite contain <0.2 wt% and 0.7 2.25 wt% Cs2O and 1.0 1.1 wt% and 1.4 1.5 wt% Rb2O, respectively. Other minerals include spessartine (e.g., Sps(93)Alm(4)Grs(3)) in scattered grains up to 0.5mm across and monazite. Oxides occur sparsely in muscovite, rarely in lepidolite, as grains up to 11 mu m long, including fluorcalciomicrolite, columbite-(Mn) with Nb > Ta, hubnerite(?) and a possible Pb-bearing microlite (Ta > Nb). The oxides, together with the muscovite, are interpreted to be related to later hydrothermal reworking of the primary lepidolite-fluorelbaite assemblage. Given the 2990 +/- 43 Ma Rb-Sr isochron and 3074 +/- 4 Ma evaporation Pb-Pb ages reported for the Sinceni Pluton and Rb/Sr mineral ages ranging from 2906 +/- 31 Ma to 3072 +/- 33 Ma reported for the pegmatites, the fluor-elbaite-cesian lepidolite- fluorcalciomicrolite-bearing pegmatite is the first reported occurrence of a lithian tourmaline and lepidolite in the geologic record, as well as one of the two earliest known examples of the lithium cesium tantalum (LCT) family of pegmatites. The Sinceni magma is most plausibly derived from a metasedimentary source by intrusion of hot mantle melts into the crust from below, thereby indicating that a "mature" continental crust existed in the Kaapvaal craton at ca. 3000 Ma.

Fluor-elbaite, lepidolite and Ta–Nb oxides from a pegmatite of the 3000 Ma Sinceni Pluton, Swaziland. Evidence for lithium–cesium–tantalum (LCT) pegmatites in the Mesoarchean / Grew, Edward S.; Bosi, Ferdinando; Ros, Linus; Kristiansson, Per; Gunter, Mickey E.; Hålenius, Ulf; Trumbull, Robert B.; Yates, Martin G.. - In: EUROPEAN JOURNAL OF MINERALOGY. - ISSN 0935-1221. - 30:2(2018), pp. 205-218. [10.1127/ejm/2017/0029-2686]

Fluor-elbaite, lepidolite and Ta–Nb oxides from a pegmatite of the 3000 Ma Sinceni Pluton, Swaziland. Evidence for lithium–cesium–tantalum (LCT) pegmatites in the Mesoarchean

Bosi, Ferdinando;
2018

Abstract

Mineral evolution is concerned with the timing of mineral occurrences, such as the earliest reported occurrences in the geologic record. Minerals containing essential Li have not been reported from rocks older than ca. 3000 Ma, thus the lithian tourmaline (fluor-elbaite) and mica (lepidolite) assemblage from a pegmatite near Zishineni associated with the ca. 3000 Ma Sinceni Pluton presents unusual interest. Fluor-elbaite (0.75-0.98 F per formula unit) forms green crystals up to 50 trim long. Spindle stage measurements give omega = 1.652(1), epsilon = 1.627(1) (589.3 nm). Optical absorption spectroscopy shows Fe and Mn are divalent; infra-red spectroscopy demonstrates the presence of Li and indicates the presence of (OH) at both the (OH) sites. Electron microprobe analysis of 330 points on several prisms, the largest of which is zoned in Fe and Ca, gives the following average and standard deviations in wt%: SiO2 37.29 (0.26), TiO2 0.05 (0.05), Al2O3 38.14 (0.35), Cr2O3 0 (0.02), MgO 0.02 (0.01), MnO 3.57 (0.25), FeO 2.48 (0.60), Na2O 2.48 (0.09), K2O 0.03 (0.12), CaO 0.77 (0.21), F 1.80 (0.11), Cl 0 (0.01) wt%.Nuclear reaction analyses gave Li2O 0.91 (0.04) and B2O3 10.55 (0.45). The empirical formula of fluor-elbaite was determined by integrating crystal-chemical data from electron microprobe analysis, nuclear reaction analysis, crystal structure refinement using X-ray diffraction, infra-red and optical absorption spectroscopy:(X)(square 0.09Na0.77K0.01Ca0.13)(Sigma 1.00)(Y)(square 0.35Li0.59Mn0.492+ Fe0.332+Al1.23Ti0.01)(Sigma 3.00)Al-6(Si6O18)(BO3)(3)(O3)(OH)(3)(O1)[F-0.92(OH)(0.08)](Sigma 1.00). The crystal structure of fluor-elbaite was refined to statistical indices R1 for 1454 reflections similar to 2% using MoKa X-ray intensity data. Structural data confirm the presence of significant vacancies at the Y site. Micas include lepidolite in flakes several millimeters across that are veined and overgrown by fine-grained muscovite.Silica and (FeO + MnO) increase, and A1 decreases with F, all giving tight linear fits for both micas taken together, suggesting both micas can be regarded as interstratified muscovite and lithium mica consisting of 35.2 wt% masutomilite containing nearly equal amounts of Mn and Fe, 52.8 wt% polylithionite and 11.9 wt% trilithionite. Muscovite and lepidolite contain <0.2 wt% and 0.7 2.25 wt% Cs2O and 1.0 1.1 wt% and 1.4 1.5 wt% Rb2O, respectively. Other minerals include spessartine (e.g., Sps(93)Alm(4)Grs(3)) in scattered grains up to 0.5mm across and monazite. Oxides occur sparsely in muscovite, rarely in lepidolite, as grains up to 11 mu m long, including fluorcalciomicrolite, columbite-(Mn) with Nb > Ta, hubnerite(?) and a possible Pb-bearing microlite (Ta > Nb). The oxides, together with the muscovite, are interpreted to be related to later hydrothermal reworking of the primary lepidolite-fluorelbaite assemblage. Given the 2990 +/- 43 Ma Rb-Sr isochron and 3074 +/- 4 Ma evaporation Pb-Pb ages reported for the Sinceni Pluton and Rb/Sr mineral ages ranging from 2906 +/- 31 Ma to 3072 +/- 33 Ma reported for the pegmatites, the fluor-elbaite-cesian lepidolite- fluorcalciomicrolite-bearing pegmatite is the first reported occurrence of a lithian tourmaline and lepidolite in the geologic record, as well as one of the two earliest known examples of the lithium cesium tantalum (LCT) family of pegmatites. The Sinceni magma is most plausibly derived from a metasedimentary source by intrusion of hot mantle melts into the crust from below, thereby indicating that a "mature" continental crust existed in the Kaapvaal craton at ca. 3000 Ma.
2018
mineral evolution; lithium; cesium; tantalum; tourmaline; mica; pegmatite; crystal structure; optical spectroscopy; infrared spectroscopy
01 Pubblicazione su rivista::01a Articolo in rivista
Fluor-elbaite, lepidolite and Ta–Nb oxides from a pegmatite of the 3000 Ma Sinceni Pluton, Swaziland. Evidence for lithium–cesium–tantalum (LCT) pegmatites in the Mesoarchean / Grew, Edward S.; Bosi, Ferdinando; Ros, Linus; Kristiansson, Per; Gunter, Mickey E.; Hålenius, Ulf; Trumbull, Robert B.; Yates, Martin G.. - In: EUROPEAN JOURNAL OF MINERALOGY. - ISSN 0935-1221. - 30:2(2018), pp. 205-218. [10.1127/ejm/2017/0029-2686]
File allegati a questo prodotto
File Dimensione Formato  
Grew_Fluor-elbaite_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 648.16 kB
Formato Adobe PDF
648.16 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1271372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact